First-phase release and model of pore space network in a sustained release system

Xutao Shi

Student Presenter for Rigaku X-ray Computed Tomography Seminar

Biopharmaceutical & drug delivery systems

Biopharmaceutical & drug delivery systems

Advantages:

- Protection against drug degradation/denaturation
- High specificity
- Less frequent administration
- Long-term bioavailability
- Improved patient compliances

Inflammatory diseases

Organ transplantation

Motivation & research question

Research question:

- Release process is dictated by complex interactions between delivery systems and environment
- Tight control of the release profile is a major challenge in the design of delivery systems
- A physically-based model can enable prediction outside experimentally verified behavior

using a physically-based model?

3

acid)-based (PLGA) delivery systems

Fredenberg S, Wahlgren M et al. Int J Pharm. 2011;415(1-2):34-52. Peppas NA, Narasimhan B. J Control Release. 2014;190:75-81 Mitragotri S, Burke PA, Langer R. Nat Rev Drug Discov. 2014;13(9):655-672.

Experimental design

Parameter space

- 5 design factors (level varied around A)
- Mostly one factor at a time approach

Parameter space (partial)

Design Parameter	Formula A	Formula D	Formula E	Formula F	Formula I
Polymer initial MW [kDa]	60	110	60	60	60
Drug loading [wt%]	15	15	5	25	15
L:G ratio	75:25	75:25	75:25	75:25	85:15
Polymer grade & end-group*	55	6S	55	55	5A

*Number: Intrinsic viscosity/MW; S: ester; A: acid

Problem Statement

Implantable polymer rods that release bioagents via **physic-chemical processes**

Processes:

- Drug diffusion out
- Water diffusion in
- Matrix degradation
- **Degradative reaction**
 - PLGA hydrolysis

Methods – modeling approach

Modeled uptake and release mechanisms:

-	Drug:	$\frac{\partial C_D}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} D_D(r, t) \right)$	$t)C_D$		► <i>H</i> ₂ 0
-	Water:	$\frac{\partial C_W}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} D_W C_V \right)$	$_{v})-k[E]C_{w}$	Drug	
-	Polymer:	$\frac{\partial C_E}{\partial t} = -kC_E C_w$	$C_E = \rho \left(\frac{1}{M_0} - \frac{1}{MW} \right)$		

6

Model Parameter	Variable	Method
Drug diffusion coefficient	$D_{D,0}$	Heuristic
Drug initial concentration	$C_{D,0}$	Design
Water diffusion coefficient	D_w	Estimation
Water maximum concentration	$C_{w,0}$	Estimation
Occlusion radius	R _{occ}	Heuristic
Radius of cylinder	R	Design
Initial polymer MW	MW_0	Design
Polymer MW at release	MW_r	Estimation
Polymer degradation rate constant	k _{deg}	Fit
Polymer degradation variance	σ_r^2	Estimation

Previous rate law $\frac{\partial MW}{\partial t} = -kMWC_w$

Hydrolysis

Rothstein SN, Federspiel WJ, Little SR. *J Mater Chem*. 2008;18(16):1873. Antheunis H, van der Meer J-C et al. *Biomacromolecules*. 2010;11(4):1118-1124.

Methods – modeling approach

Modeled uptake and release mechanisms:

Model Parameter	Variable	Method
Drug diffusion coefficient	$D_{D,0}$	Heuristic
Drug initial concentration	$C_{D,0}$	Design
Water diffusion coefficient	D_w	Estimation
Water maximum concentration	$C_{w,0}$	Estimation
Occlusion radius	R _{occ}	Heuristic
Radius of cylinder	R	Design
Initial polymer MW	MW_0	Design
Polymer MW at release	MW_r	Estimation
Polymer degradation rate constant	k_{deg}	Fit
Polymer degradation variance	σ_r^2	Estimation

Position-dependent

– Drug:

Water:

Polymer:

$$D_D(r,t) = \begin{cases} D_{D,0}; & \text{if } r > (R - R_{occ}) \\ D_{D,0} \cdot \epsilon (MW(r,t)); & \text{if } r \le (R - R_{occ}) \end{cases}$$

WW-dependent
$$\epsilon (MW(r,t)) = 1 - \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{MW(r,t) - MW_r}{\sqrt{2\sigma_r^2}} \right) \right]$$

Rothstein SN, Federspiel WJ, Little SR. J Mater Chem. 2008;18(16):1873. Antheunis H, van der Meer J-C et al. Biomacromolecules. 2010;11(4):1118-1124.

 $\sqrt{2\sigma_r^2}$

 $\frac{\partial C_D}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} D_D(r, t) C_D \right)$

 $\frac{\partial C_W}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} D_w C_w \right) - k[E] C_w$

 $\frac{\partial C_E}{\partial t} = -kC_E C_W \qquad C_E = \rho \left(\frac{1}{M_0} - \frac{1}{MW}\right)$

First-phase release

Hypothesis to be investigated:

- Percolation of drug particles within the polymer rods (threshold ~ 0.2; spheres; jammed)
- Faster water penetration and pore formation

Supporting evidence:

- CFM images of FITC-dextran particles
- Apparent particle volume percent from binary transformation

CFM image of formulation A (Inset is binary transformation)

Koshari SHS. Dissertation. 2018 Rintoul MD, Torquato S. J Phys A Math Gen. 1997;30(16):L585-L592. Ziff RM, Torquato S. J Phys A Math Theor. 2017;50(8).

8

First-phase release

Supporting evidence:

٠

Hypothesis to be investigated:

transformation

rods (threshold ~ 0.2; spheres; jammed)

CFM images of FITC-dextran particles

Koshari SHS. Dissertation. 2018 Rintoul MD, Torquato S. J Phys A Math Gen. 1997;30(16):L585-L592. Ziff RM, Torquato S. J Phys A Math Theor. 2017;50(8).

Limitations of CFM

Hypothesis to be investigated:

- Percolation of drug particles within the polymer rods (threshold ~ 0.2; spheres; jammed)
- Faster water penetration and pore formation

CFM disadvantages:

- 1. Only recognize discrete FITC distr.
- 2. Very destructive \rightarrow Evolution is unavailable
- 3. Restricted to 2D → Network analysis is limited

Microscopy - CFM results

X-ray CT Nano3Dx

Advantages:

- 1. Contrast based on density
- 2. Non-destructive loading
- 3. Optical resolution $0.325 \mu m/px$
- 4. 3D reconstruction
- 5. Image segmentation (Dragonfly)

Pore Space Network

Pore Space Network

Pore space network exit

Cross-section

3D reconstruction

Population Balance

Population balance (PBM)

Assumption:

- No breakage
- Volume basis
- Time-independent growth kernel: $G = G_0 v^{\xi}$
- Nucleation: $\dot{b} = B_{nuc}\delta(v 0.27)$
- *V* does not change significantly (ROI boxing)
- Initial condition: n(v, 0) = 0 or n(v, D0)
- Continuum Brownian collisional kernel: $\beta(\phi, \Phi) = \beta_0 (\phi^{\alpha} \Phi^{\lambda - \alpha} + \phi^{\lambda - \alpha} \Phi^{\alpha})$

Population balance – moment method

$$\frac{dv_{j}}{dt} = \dot{B}V_{0}^{j} + jG_{0}v_{j-1/3} + \beta_{0} \left[\sum_{k=0}^{j} {j \choose k} \left(v_{k}v_{j-k} + v_{k+1/3}v_{j-k-1/3} \right) - v_{1/3}v_{j-1/3} - 2v_{0}v_{j} \right]$$

Special moments:

- Number balance:
- Mass balance:
- Variance balance:

$$\begin{aligned} \frac{\partial v_0}{\partial t} &= \dot{B} - \beta_0 \left[-v_0 v_0 - v_{1/3} v_{-1/3} \right] \\ \frac{\partial v_1}{\partial t} &= \dot{B} V_0 + G_0 v_{2/3} \\ \frac{\partial v_2}{\partial t} &= \dot{B} V_0^2 + 2G_0 v_{5/3} + 2\beta_0 \left[v_1 v_1 + v_{4/3} v_{2/3} \right] \end{aligned}$$

Non-integer moment closure by distribution/MOMIC

Pore domain utility:

- 1. Refit beta distribution using PBM-predicted moments
- 2. Reconstruct porous domains in evolution
- 3. Implement Little/Antheunis model with moving pore mesh

Conclusion & Recap.

- Mechanistic model & First-phase release
- Hypothesis: Percolation in pores
- XRCT: confirm early-stage pore formation
- Evolution of pore space distribution
- **Population balance model**

Acknowledgements

JIVER SITY OF

PBM Moment Fit

Survival Distr [-]

Modified model prediction

Design Parameter	Formula A		Formula F
Polymer initial MW [kDa]	60		60
Drug loading [wt%]	15		25
L:G ratio	75:25		75:25
End-group	S		S

With fitted occlusion radius:

- Close fit in MW profiles
- Capturing first-phase release
- Occlusion radius spans differently based on extent of burst release

High drug load

Experimental observations:

- Formulation A and F show significant firstphase release
- Reference does not reach complete release
- Higher L:G ratio (I) alone does not lead to slow degradation, indicating strong influence by the acid end-group.
- Water uptake occurs quickly and remains constant

Design Parameter	Formula A
Polymer initial MW [kDa]	60
Drug loading [wt%]	15
L:G ratio	75:25
End-group	S

Formula F	Formula I
60	60
25	15
75:25	85:15
S	А

High drug load

NIVERSITY

Experimental observations:

- Formulation A and F show significant firstphase release
- Reference does not reach complete release
- Higher L:G ratio (I) alone does not lead to slow degradation, indicating strong influence of the acid end-group
- Water uptake occurs quickly and remains constant

Design Parameter	Formula A
Polymer initial MW [kDa]	60
Drug loading [wt%]	15
L:G ratio	75:25
End-group	S

Formula F	Formula I
60	60
25	15
75:25	85:15
S	А

Hi	gh dru	g load	b	8	ι	Н	igł
	Design Parameter	Formula A					For
	Polymer initial MW [kDa]	60					6
	Drug loading [wt%]	15					2
	L:G ratio	75:25					75
	End-group	S					

Model predictions (initial):

INIVERSITY OF

- Sigmoidal drug release profile
- Higher drug loading only affects the absolute amount of release (not the relative shape)
- Does not capture first-phase release
- Discrepancy in drug release from MW profiles

25

First-phase release

Supporting evidence:

- CFM images of FITC-dextran particles
- Apparent particle volume percent from binary transformation
- Pore formation motivates occlusion radius fitting

26

Koshari SHS. Dissertation. 2018 Rintoul MD, Torquato S. J Phys A Math Gen. 1997;30(16):L585-L592. Ziff RM, Torquato S. J Phys A Math Theor. 2017;50(8).

Low drug load

High MW &

Experimental observations:

- Formulations A and D show significant firstphase release
- All 3 formulations show incomplete release
- Similar rate of polymer degradation, indicating un-affected hydrolysis at higher polymer MW and lower drug loading

Design Parameter	Formula A	Formula D	Formula E
Polymer initial MW [kDa]	60	110	60
Drug loading [wt%]	15	15	5
L:G ratio	75:25	75:25	75:25
End-group	S	S	S

Low drug load

Design Parameter	Formula A	Formula D	Formula E
Polymer initial MW [kDa]	60	110	60
Drug loading [wt%]	15	15	5
L:G ratio	75:25	75:25	75:25
End-group	S	S	S

High MW

Model predictions (initial):

- Sigmoidal drug release profile
- Higher polymer molar mass/lower drug loading does not affect predicted rate of degradation

&

- Does not capture first-phase release
- Discrepancy in drug release from MW profiles

Methods – release characterization

Water uptake

First-phase release

Preliminary explanations:

• Rapid erosion due to polymer $\sigma_{MW} >> MW_0$

• Occlusion radius (~ 2% of rod radius)

Limitations/Hypothesis

Features:

Hypothesis

- **Burst release**
- Incomplete release
- End-phase degradation lag

* Koshari S.H.S. (2018). Ph.D. Dissertation, University of Delaware, Newark, DE.

